基于回归神经网络的非线性时变系统辨识

被引:10
作者
邹高峰
王正欧
机构
[1] 天津大学系统工程研究所
[2] 天津大学系统工程研究所 天津
[3] 天津
关键词
系统辨识; 回归神经网络; 非线性时变系统; 扩展卡尔曼滤波;
D O I
10.13195/j.cd.2002.05.5.zougf.002
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
为克服基于前馈神经网络的非线性时变系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷 ,提出一种基于回归神经网络的非线性时变系统的辨识算法。针对现有的回归网络学习算法大多采用梯度算法 ,收敛速度缓慢问题 ,提出一种具有快速收敛性的扩展卡尔曼滤波学习算法 ,大大提高了学习收敛速度 ;并推导了一种基于单个神经元的局部化算法 ,减少了计算量。仿真实例证明 ,所提出的算法是有效的。
引用
收藏
页码:517 / 521
页数:5
相关论文
共 2 条
[1]   一种回归神经网络的快速在线学习算法 [J].
韦巍 .
自动化学报, 1998, (05) :42-47
[2]  
系统辨识[M]. 机械工业出版社 , 刘豹, 1993