针对数字图书馆图书借阅推荐系统中通常采用的协同过滤算法中存在的不足,分析了该算法存在在用户多兴趣情况下推荐时难免会产生偏差,从而降低预测推荐准确率问题,进而提出了一种基于用户多兴趣度的图书借阅推荐系统推荐算法的设计思路。该算法首先对待推荐图书进行分类,然后根据用户的借阅情况计算其对每类图书的兴趣度,将对每类图书兴趣度相似的用户聚为一类,在小范围内寻找最近邻居,最后根据用户对不同类别书目的兴趣度作为权重值来产生对该用户的每类图书的推荐数目。该算法不仅能够解决用户多兴趣度问题,同时也可减少计算工作量,提高推荐的准确率。