基于蜂群算法的图像边缘检测

被引:28
作者
肖永豪 [1 ]
余卫宇 [1 ,2 ]
机构
[1] 华南理工大学电信学院
[2] 苏州大学江苏省计算机信息处理技术重点实验室
关键词
蜂群算法; 图像阈值; 边缘检测;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
提出了一种基于蜂群算法的图像边缘检测方法。利用蜂群算法的特点,对图像边界进行快速搜索,得到一组局部最优点,然后分别从局部最优点开始进行搜索,找出图像中各物体的边缘点,所有蜜蜂找出的边界点的并集就是图像边缘。仿真实验表明该算法是可行和有效的。
引用
收藏
页码:2748 / 2750
页数:3
相关论文
共 8 条
[1]  
Bee colony optimization:principles andapplications. TEODOROVIC D,LUCIC P. Proc of the 8th Seminar on Neural Network Appli-cations in Electrical Engineering . 2006
[2]  
An ant colony optimizationalgorithm for image edge detection. TIAN Jing,YU Wei-Yu,XIE Sheng-li. Proc of IEEE World Con-gress on Computational Intelligence . 2008
[3]  
On the performance of artificial beecolony (ABC)algorithm. KARABOGAD,KARABOGAB. Applied Soft Computing . 2008
[4]  
An improved ant colony algorithm forfuzzy clustering in image segmentation. HAN Yan-fang,SHI Peng-fei. Neurocomputing . 2007
[5]  
Improved Cannyedges using ant colony optimization. WONG Ya-ping,SOH V C-M,BAN K W,et al. Proc of the 5th InternationalConference on Computer Graphics,Imaging and Visualization . 2008
[6]  
The wisdom of the hive:The social physiology of honey bee colonies. Seeley T D. . 1996
[7]  
Anidea based on honey bee warmfor numerical opti mization. KARABOGA D. . 2005
[8]  
Object segmentation using ant colony optimization algorithm and fuzzy entropy. TAO Wen-bing,JIN Hai,LIU Li-man. Pattern Recog-nition Letters . 2007