稀疏贝叶斯模型与相关向量机学习研究

被引:22
作者
杨国鹏 [1 ]
周欣 [2 ]
余旭初 [1 ]
机构
[1] 信息工程大学测绘学院
[2] 信息工程大学信息工程学院
关键词
稀疏贝叶斯模型; 相关向量机; 支持向量机;
D O I
暂无
中图分类号
TP181 [自动推理、机器学习];
学科分类号
摘要
虽然支持向量机在模式识别的相关领域得到了广泛应用,但它自身固有许多不足之处。相关向量机是在稀疏贝叶斯框架下提出的稀疏模型,模型没有规则化系数,核函数不要求满足Mercer条件。相关向量机不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。首先介绍了稀疏贝叶斯回归和分类模型,通过参数推断过程,将相关向量机学习转化为最大化边缘似然函数估计,并分析了3种估计方法,给出了快速序列稀疏贝叶斯学习算法流程。
引用
收藏
页码:225 / 228
页数:4
相关论文
共 12 条
[1]  
Kernel Methods for Pattern Analysis. John Shawe-Taylor,Nello Cristianini. . 2004
[2]  
Scaling Text Classificaton with Relevance Vector Machines. Catarina S,Bernardete R. IEEE International Conference on Systems,Man and Cybernetics . 2006
[3]  
Relevance Vector Machine based Mixture of Experts. Thayananthan A. . 2005
[4]  
Sparse kernel principal component analysis. Tipping ME. Advances in Neural Infor mation Processing Systems . 2001
[5]  
Sequential relevance vector machine learning from time series. Nikolay Nikolaev,Peter Tino. Proceedings of International Joint Conference on Neural Networks . 2005
[6]  
Pattern Recognition and Machine Learning. Bishop C. M. . 2007
[7]  
A practical Bayesian framework for backpropagation networks. MacKay DJC. Neural Computation . 1992
[8]  
Variational relevance vector ma-chines. BISHOP C M,Tipping M E. Proceedings of the16th Conference on Uncertaintyin Artificial Intelligence . 2000
[9]  
Tipping M E,Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research . 2001
[10]  
Fast marginal likelihood maximization for sparse Bayesian models. Tipping, M. E,A. C Faul. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics . 2003