针对传统的基于脉冲耦合神经网络(PCNN)的融合算法中每个神经元链接强度取同一常数的不足,提出了一种基于自适应PCNN图像融合新算法。作为显著性特征,使用像素的拉普拉斯能量(EOL,energy of Lapla-cian)和标准差(SD,standard deviation)分别作为PCNN对应神经元的链接强度值。实验结果表明,本文方法融合结果优于Laplacian方法、小波方法和传统的PCNN方法。
引用
收藏
页码:779 / 782
页数:4
相关论文
共 1 条
[1]
Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex[J] . R. Eckhorn,H. J. Reitboeck,M. Arndt,P. Dicke.Neural Computation . 1990 (3)
[1]
Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex[J] . R. Eckhorn,H. J. Reitboeck,M. Arndt,P. Dicke.Neural Computation . 1990 (3)