本文介绍和阐述怎样运用“马尔可夫链蒙特卡洛”(MCMC)技术,并结合Bayes方法来估计IRT的模型参数。首先简要地概述了MCMC方法估计模型参数的基本原理;其次介绍MCMC方法估计模型参数的一般方法,涉及Gibbs抽样、取舍抽样、Metropolis-Hastings算法等概念和方法;最后以IRT的“二参数逻辑斯蒂”(2PL)模型为例,重点介绍了用“Gibbs范围内的M-H算法”估计项目参数(β1jβ2j)的算法过程。结束本文时还解说了MCMC方法的特点。阅读本文需具有随机过程、Markov链、Bayes方法等概率论的基本知识。