基于改进Joachims上界的SVM泛化性能评价方法

被引:6
作者
宋小杉
蒋晓瑜
汪熙
姚军
机构
[1] 装甲兵工程学院控制工程系
关键词
支持向量机; 高斯核; 泛化性能评价; 改进Joachims上界;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
留一法(Leave One Out,LOO)错误率是评价支持向量机(Support Vector Machine,SVM)性能最准确方法,LOO错误率越小,SVM泛化性能越好.但LOO实现起来较为费时.因此人们提出了LOO错误率的各种上界作为近似,最有代表性的是Joachims上界和Jaakkola-Haussler上界.基于LOO上界的SVM泛化性能评价方法不但较为准确,而且耗时大大减小.本文首先证明了在径向基函数(Radial Basis Function,RBF)为核函数的SVM中,Joachims上界和Jaakkola-Haussler上界是等价的;其次对Joachims上界进行理论分析,指出了其不足之处,并予以改进,得到了改进的Joachims上界;最后通过实验对LOO错误率J、aakkola-Haussler上界J、oachims上界和改进的Joachims上界进行了比较,结果显示改进的Joachims上界比Jaakkola-Haussler上界和Joachims上界更加接近LOO错误率,是一种更加准确的SVM泛化性能评价方法.
引用
收藏
页码:1379 / 1383
页数:5
相关论文
共 2 条
[1]   支撑矢量机推广能力分析 [J].
周伟达 ;
张莉 ;
焦李成 .
电子学报, 2001, (05) :590-594
[2]   Automatic model selection for the optimization of SVM kernels [J].
Ayat, NE ;
Cheriet, M ;
Suen, CY .
PATTERN RECOGNITION, 2005, 38 (10) :1733-1745