结合感知特征和自然场景统计的无参考图像质量评价

被引:12
作者
贾惠珍 [1 ]
孙权森 [1 ]
王同罕 [2 ]
机构
[1] 南京理工大学计算机科学与工程学院
[2] 东南大学影像科学与技术实验室
关键词
无参考图像质量评价; 感知特征; 统计特征; 支持向量机回归;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
目的为了更有效地评价各种失真类型的图像,提出了一种新颖的通用型无参考图像质量评价方法,它采取学习感知特征和空域自然统计特征相结合的方法来构建图像质量评价模型。方法在提取显著分块的36个空域自然统计特征的基础上,增加基于相位一致性熵、基于相位一致性均值、梯度均值以及失真图像的熵4个感知特征,采用支持向量机回归的学习方式来构建图像特征与人的主观分数的映射关系,进而根据所提取特征预测图像质量。结果在LIVE图像库上的实验结果表明,本文方法预测质量分数与人的主观分数具有较高的一致性,基本呈线性关系,鲁棒性较好,运行时间较短,综合性能较好。结论本文方法预测性能较好,特征选取合理,学习方法有效。
引用
收藏
页码:859 / 867
页数:9
相关论文
共 22 条
  • [1] A Two-Step Framework for Constructing Blind Image Quality Indices. Anush Krishna Moorthy,Alan Conrad Bovik. IEEE Signal Processing Letters . 2010
  • [2] A DCT Statistics-Based Blind Image Quality Index. Michele A. Saad,Alan C. Bovik,Christophe Charrier. IEEE Signal Processing Letters . 2010
  • [3] Blind image quality assessment through anisotropy. Gabarda, Salvador,Cristóbal, Gabriel. Journal of the Optical Society of America A: Optics and Image Science, and Vision . 2007
  • [4] Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video. Sharifi, Kamran,Leron-Garcia, Alberto. IEEE Transactions on Circuits and Systems for Video Technology . 1995
  • [5] Making a “Completely Blind” Image Quality Analyzer. Mittal, A.,Soundararajan, R.,Bovik, A. C. Signal Processing Letters, IEEE . 2013
  • [6] No-Reference Image Quality Assessment in the Spatial Domain. Anish Mittal,Anush Krishna Moorthy,Alan Conrad Bovik. IEEE Transactions on Image Processing . 2012
  • [7] Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain. Michele A. Saad,Alan C. Bovik,Christophe Charrier. IEEE Transactions on Image Processing . 2012
  • [8] No-Reference Image Quality Assessment Using Visual Codebooks. Peng Ye,David Doermann. IEEE Transactions on Image Processing . 2012
  • [9] Live image quality assessment database release 2. Sheikh H R,Wang Z,Cormack L,et al. http://live.ece.utexas.edu/ . 2007
  • [10] Blind Image Quality Assessment Using a General Regression Neural Network. Chaofeng Li,A. C. Bovik,Xiaojun Wu. IEEE Transactions on Neural Networks . 2011