具有二项式型多项式下三角矩阵的性质

被引:7
作者
谭明术
王天明
机构
[1] 大连理工大学应用数学系
[2] 大连理工大学应用数学系 辽宁 大连 重庆三峡学院数学系
[3] 重庆
[4] 辽宁 大连
关键词
Pascal矩阵; 二项式型多项式; 下三角矩阵;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
070104 ;
摘要
n+1阶下三角方阵Ln[x]定义为:(Ln[x])ij=(?)i-j(x)l(i,j)(如果i≥j),否则为0,且满足条件l(i,k)l(k,j)=l(i,j)(k-j i-j)和 ,即二项式型多项式函数矩阵.n+1阶方阵Ln定义为:当i≥j时,(Ln)ij=l(i,j),否则为0.本文研究了比Pascal函数矩阵及Lah矩阵更广泛的一类矩阵Ln[x]与Ln,得到了更一般的结果和一些组合恒等式.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 9 条
[1]  
Formal power series of logarithmic type. LOEB D E,ROTA G C. Advances in Mathematics . 1989
[2]  
Pascal k-eliminated functional matrix and its property. BAYAT M,TEIMOOR H. Linear Algebra and Its Applications . 2000
[3]  
Pascal’s matrices. CALL G S,VELLEMAN D J. The American Mathematical Monthly . 1993
[4]  
AD extension of tie generalized Pascal matrix and its algebraic properties. ZHANG Zhi-zheng,LIU Mai-xue. Linear Algebra and Its Applications . 1998
[5]  
Lai matrix and its algebraic properties. TAN Ming-shu,WANG Tian-ming. Ars Combinatoria . 2004
[6]  
Tie linear algebra of the Pascal matrix. BRAWER R,PIROVINO M. Linear Algebra and Its Applications . 1992
[7]  
Stirling matrix via Pascal matrix. CHEON Gi-sang,KIM Jin-soo. Linear Algebra and Its Applications . 2001
[8]  
Tie linear algebra of the generalized Pascal functional matrix. BAYAT M,TEIMOORI H. Linear Algebra and Its Applications . 1999
[9]  
Tie algebraic properties of the generalized Pascal functional matricesassociated with the exponential families. ZHAO Xi-qiang,WANG Tian-ming. Linear Algebra and Its Applications . 2000