海战场的目标检测与识别

被引:2
作者
安彧 [1 ,2 ]
王小非 [2 ]
夏学知 [2 ]
李琳 [2 ]
机构
[1] 哈尔滨工程大学计算机科学与技术学院
[2] 武汉数字工程研究所
关键词
目标识别; 显著性; 支持向量机; Dempster-Shafer证据; 海战场; 遥感图像;
D O I
10.13245/j.hust.2012.10.012
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
针对海战场图像信息的目标检测与识别,提出了一种适于海战场区域特征的遥感图像目标检测与识别方法.研究采用线性滤波器将图像划分为若干个空间尺度,并对不同空间尺度的图像,根据生物视觉生理特性的原理,提取图像中目标的视觉显著性特征,此特征包含目标不同于其周围区域的程度和空间分布状态.根据分析提取的目标空间特征信息,使用支持向量机对视觉显著性特征图像进行分类,实现目标信息提取,并通过Dempster-Shafer证据理论的分析方法判断目标的相关信息及其置信度,达到识别目标的目的.实验结果表明:此方法能以高可靠性和高精确度检测出海战场图像信息中的目标,获取目标相关信息.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 5 条
[1]   Object class recognition and localization using sparse features with limited receptive fields [J].
Mutch, Jim ;
Lowe, David G. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 80 (01) :45-57
[2]   Distinctive image features from scale-invariant keypoints [J].
Lowe, DG .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) :91-110
[3]   Robust real-time face detection [J].
Viola, P ;
Jones, MJ .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 57 (02) :137-154
[4]   Asymptotic behaviors of support vector machines with Gaussian kernel [J].
Keerthi, SS ;
Lin, CJ .
NEURAL COMPUTATION, 2003, 15 (07) :1667-1689
[5]   UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING [J].
DEMPSTER, AP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :325-&