最大频繁模式的挖掘算法

被引:5
作者
徐欣 [1 ]
阮幼林 [2 ]
机构
[1] 海军工程大学计算机工程系
[2] 武汉理工大学信息工程学院
关键词
最大频繁模式; FP-Tree; 前缀树;
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
挖掘最大频繁模式是多种数据挖掘应用中的关键问题。采用Apriori类的候选生成-检验方法或基于FP-Tree的挖掘方法需要产生大量候选或动态创建大量条件模式树,代价太高。因此,提出一种挖掘最大频繁模式的新算法。该算法利用前缀树压缩存放数据,并通过调整前缀树中节点信息和节点链直接在前缀树上采用深度优先的策略进行挖掘,既不需要生成候选也不需要创建条件模式树,提高了挖掘效率。
引用
收藏
页码:102 / 106
页数:5
相关论文
共 10 条
  • [1] As-cending Frequency Ordered Prefix-Tree:Efficient Min-ing of Frequent Patterns. Guimei Liu,Hongjun Lu,Yabo Xu,J.Xu Yu. 8th Database Systems forAdvanced Applications(DASFAA03) .
  • [2] Fast mining maximum frequent itemsets. LuSF,LuZD. Journal ofSoftware . 2001
  • [3] Pincer-search:A New Algorithm for Discovering the Maximum Frequent Set Lecture Notes in Computer Science. Lin D I,Kedem Z M. //Proceedings of the 6th European Conference on Extending Database Technology Heidelberg . 1998
  • [4] Efficiently Mining Long Patterns from Databases. R J Bayardo. ACM SIGMOD Conf Management of Data . 1998
  • [5] Association Analysis with One Scan of Databases. Huang H,Wu X,Relue R. Proc. of Pacific-Asia Conference . 2002
  • [6] A Tree Projection Algorithm for Generation of Frequent Itemsets. Agarwal R,Aggrawal C,Prasad V V V. Journal of Parallel and Distributed Computing . 2000
  • [7] Mining Frequent Patterns Without Candidate Generation. Han J,Jian Pei,Yi wen Y. Proceedings2000ACM-SIGMODInt.Conf.Management of Data . 2000
  • [8] Datamining:AnoverviewfromadatabaseperspectiveJ. ChenMS,HanJ,YuPS. IEEETransactionsonKnowledgeandDataEngineering . 1996
  • [9] An Effective Hash-based Algorithm for Mining Association Rules. J. S. Park,M. S. Chen,and P. S. Yu. Proceedings of ACM SIGMOD International Conference on Management of Data . 1995
  • [10] Fast algorithms for mining association rules. Agrawal R,and Srikant R. Proc,20th Int Conf, Very Large Data Bases . 1994