人工智能在医学影像CAD中的应用

被引:25
作者
潘亚玲
王晗琦
陆勇
机构
[1] 上海交通大学医学院附属瑞金医院
关键词
人工智能; 机器学习; 深度学习; 卷积神经网络; 计算机辅助诊断;
D O I
10.19300/j.2019.z6565zt
中图分类号
R311 [医用数学]; TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
深度学习是目前人工智能领域备受关注和极具应用前景的机器学习算法,有望革新传统计算机辅助诊断(CAD)系统,在精准影像诊断中发挥重要作用。就人工智能、机器学习、深度学习、卷积神经网络、迁移学习的基本概念,以及基于深度学习的CAD系统在肺、乳腺、心脏、颅脑、肝脏、前列腺、骨骼的影像及病理学中的研究现状予以综述。
引用
收藏
页码:3 / 7
页数:5
相关论文
共 14 条
  • [1] Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI[J] . Ling-Li Zeng,Huaning Wang,Panpan Hu,Bo Yang,Weidan Pu,Hui Shen,Xingui Chen,Zhening Liu,Hong Yin,Qingrong Tan,Kai Wang,Dewen Hu.EBioMedicine . 2018
  • [2] Deep Convolutional Neural Networks for breast cancer screening[J] . Hiba Chougrad,Hamid Zouaki,Omar Alheyane.Computer Methods and Programs in Biomedicine . 2018
  • [3] Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system[J] . Mohammed A. Al-masni,Mugahed A. Al-antari,Jeong-Min Park,Geon Gi,Tae-Yeon Kim,Patricio Rivera,Edwin Valarezo,Mun-Taek Choi,Seung-Moo Han,Tae-Seong Kim.Computer Methods and Programs in Biomedicine . 2018
  • [4] Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning
    Kermany, Daniel S.
    Goldbaum, Michael
    Cai, Wenjia
    Valentim, Carolina C. S.
    Liang, Huiying
    Baxter, Sally L.
    McKeown, Alex
    Yang, Ge
    Wu, Xiaokang
    Yan, Fangbing
    Dong, Justin
    Prasadha, Made K.
    Pei, Jacqueline
    Ting, Magdalena
    Zhu, Jie
    Li, Christina
    Hewett, Sierra
    Dong, Jason
    Ziyar, Ian
    Shi, Alexander
    Zhang, Runze
    Zheng, Lianghong
    Hou, Rui
    Shi, William
    Fu, Xin
    Duan, Yaou
    Huu, Viet A. N.
    Wen, Cindy
    Zhang, Edward D.
    Zhang, Charlotte L.
    Li, Oulan
    Wang, Xiaobo
    Singer, Michael A.
    Sun, Xiaodong
    Xu, Jie
    Tafreshi, Ali
    Lewis, M. Anthony
    Xia, Huimin
    Zhang, Kang
    [J]. CELL, 2018, 172 (05) : 1122 - +
  • [5] Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study[J] . Valentina Giannini,Simone Mazzetti,Enrico Armando,Silvia Carabalona,Filippo Russo,Alessandro Giacobbe,Giovanni Muto,Daniele Regge.European Radiology . 2017 (10)
  • [6] Fully Automated Deep Learning System for Bone Age Assessment
    Lee, Hyunkwang
    Tajmir, Shahein
    Lee, Jenny
    Zissen, Maurice
    Yeshiwas, Bethel Ayele
    Alkasab, Tarik K.
    Choy, Garry
    Do, Synho
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 427 - 441
  • [7] Detection and Labeling of Vertebrae in MR Images Using Deep Learning with Clinical Annotations as Training Data
    Forsberg, Daniel
    Sjoblom, Erik
    Sunshine, Jeffrey L.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 406 - 412
  • [8] MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images[J] . Lin Huang,Wei Xia,Bo Zhang,Bensheng Qiu,Xin Gao.Computer Methods and Programs in Biomedicine . 2017
  • [9] Computer-aided grading of gliomas based on local and global MRI features[J] . Kevin Li-Chun Hsieh,Chung-Ming Lo,Chih-Jou Hsiao.Computer Methods and Programs in Biomedicine . 2017
  • [10] A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI[J] . M.R. Avendi,Arash Kheradvar,Hamid Jafarkhani.Medical Image Analysis . 2016