基于自适应惯性权重的均值粒子群优化算法

被引:36
作者
赵志刚
林玉娇
尹兆远
机构
[1] 广西大学计算机与电子信息学院
关键词
粒子群优化; 均值; 自适应惯性权重; 适应度值;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖参数选取等缺点,提出了一种基于自适应惯性权重的均值粒子群优化算法。对算法中的惯性权重参数采用动态自适应变化方式,在迭代过程中根据粒子适应度差值将种群划分为三个等级,对不同等级的粒子采用不同的惯性权重策略,使粒子能根据自己所处的位置选择合适的惯性权重值,更快地收敛到全局最优位置;同时分别用个体极值和全局极值的线性组合取代PSO算法中的全局最优位置与个体最优位置。通过实验仿真与对比,验证了新算法性能优于标准PSO及其它一些改进的PSO算法,能够用较少的迭代次数找到最优解,具有更快的收敛速度和更高的收敛精度。
引用
收藏
页码:501 / 506
页数:6
相关论文
共 5 条