基于小波神经网络和D-S证据理论的电力变压器故障诊断研究(英文)

被引:7
作者
梁流铭 [1 ]
陈伟根 [1 ]
岳彦峰 [2 ]
机构
[1] State Key Laboratory of Power Transmission Equipment & System Security and New Technology,Chongqing University
[2] Luoyang Power Supply Company
关键词
transformer; wavelet neural network; D-S evidence theory; fault diagnosis; adaptive genetic algorithm; information fusion;
D O I
10.13336/j.1003-6520.hve.2008.12.010
中图分类号
TM407 [维护、检修];
学科分类号
080801 ;
摘要
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.
引用
收藏
页码:2694 / 2700
页数:7
相关论文
共 4 条
[1]   基于改进PSO-BP神经网络和D-S证据理论的大型变压器故障综合诊断 [J].
魏星 ;
舒乃秋 ;
崔鹏程 ;
吴波 .
电力系统自动化, 2006, (07) :46-50
[2]   多神经网络与证据理论融合的变压器故障综合诊断方法研究 [J].
廖瑞金 ;
廖玉祥 ;
杨丽君 ;
王有元 .
中国电机工程学报, 2006, (03) :119-124
[3]   基于模糊输入的BP-ART2混合神经网络在电力变压器故障综合诊断中的应用 [J].
高如新 ;
王福忠 ;
冉正云 .
继电器, 2004, (05) :15-18+69
[4]   基于信息融合技术的并发故障诊断的研究 [J].
蔡兴国 ;
马平 .
中国电机工程学报, 2003, (05) :113-116