多传感器信息融合技术研究现状和发展趋势

被引:52
作者
张明路
戈新良
唐智强
刘兴荣
机构
[1] 河北工业大学机械学院
[2] 河北工业大学机械学院 天津
[3] 天津
[4] 天津
关键词
多传感器; 信息融合; 算法; 控制结构;
D O I
10.14081/j.cnki.hgdxb.2003.02.008
中图分类号
TP212 [发送器(变换器)、传感器];
学科分类号
080202 ;
摘要
多传感器信息融合可以避免单一传感器的局限性,获取更多的信息,提高目标识别能力.本文较为全面的介绍了多传感器信息融合技术的背景、概念、控制结构、融合层次的划分等内容,并预测其将来的发展趋势.
引用
收藏
页码:30 / 35
页数:6
相关论文
共 13 条
[1]  
Object location based on sensor fusion of vision and tactual sensing. KinoshitaG,IkhsanY,OsumiY. Advanced Robotics . 2000
[2]  
Autonomous driving on vehicle test tracks. WeisserH,SchulenbergP,BergholzR,etal. InProc. 1998IEEEInt. Conf.on Intelligent Vehicles . 1998
[3]  
On-line predication of surface fin-ish and dimensional deviation in turning using neural net-work based fusion. zouzi R A. International Journal of Machine Tools and Manufacture . 1997
[4]  
Surface profile determation from multilsonar data using morphological processing. BaskentD,BarshenB. The International Journal of Robotics Research . 1999
[5]  
Application of a general learning algorithm to thecontrol of robotics manipulator. Miller WT. The International Journal of Robotics Research . 1998
[6]  
Neural network solutions to the tool condition monitoring problem in metal cutting-a critical reciew of methods. E Domla D. Int. 3. Mach. Tools Manufact . 1997
[7]  
Information fusion in computer vision using fuzzy integral. Tahani H,Keller J M. IEEE Transactions on Systems Man and Cybernetics . 1990
[8]  
An information centric approach to heterogeneous multi sensor integration for robotic applications. Bruder S B H. Robotics and Autonomous Systems . 1999
[9]  
Construction of fuzzy behavior-based control systems for a mobile robot. Keigo Watanabe,Kiyotaka Lzumi. Proceeding of the ThirdInternational Symposium on Artifical Life and Robotics, Oita, Japan . 1998
[10]  
Information fusion : Application to data and model fusion for ultrasound images segmentation. Solaiman B,DebonR,RipelierF,et al. IEEE Transactions on Engineering . 1999