High-resolution Remote Sensing Image Segmentation Using Minimum Spanning Tree Tessellation and RHMRF-FCM Algorithm

被引:5
作者
Wenjie LIN
Yu LI
Quanhua ZHAO
机构
[1] TheInstituteofRemoteSensing,SchoolofGeomatics,LiaoningTechnicalUniversity
关键词
static minimum spanning tree tessellation; shape parameter; RHMRF; FCM algorithm; high-resolution remote sensing image segmentation;
D O I
暂无
中图分类号
P237 [测绘遥感技术];
学科分类号
1404 ;
摘要
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree( MST) tessellation considering shape information and the RHMRF-FCM algorithm. It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist. By using the MST model and shape information, the object boundary and geometrical noise can be expressed and reduced respectively. Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented. Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function. Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results. To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with World View-3( WV-3) high resolution image. The results from proposed method with different parameters and comparing methods( multi-resolution method and watershed segmentation method in e Cognition software) are analyzed qualitatively and quantitatively.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 13 条
[1]   结合马氏距离的区域化模糊聚类遥感图像分割 [J].
赵泉华 ;
李晓丽 ;
赵雪梅 ;
李玉 .
中国矿业大学学报 , 2017, (01) :222-228
[2]   结合Voronoi划分HMRF模型的模糊ISODATA图像分割 [J].
赵泉华 ;
李晓丽 ;
赵雪梅 ;
李玉 .
信号处理, 2016, 32 (10) :1233-1243
[3]   结合规则划分和M-H算法的SAR图像分割 [J].
王玉 ;
李玉 ;
赵泉华 .
武汉大学学报(信息科学版) , 2016, (11) :1491-1497
[4]   一种改进的基于最小生成树的遥感影像多尺度分割方法 [J].
李慧 ;
唐韵玮 ;
刘庆杰 ;
丁海峰 ;
荆林海 .
测绘学报, 2015, 44 (07) :791-796
[5]   结合高斯回归模型和隐马尔可夫随机场的模糊聚类图像分割 [J].
赵雪梅 ;
李玉 ;
赵泉华 .
电子与信息学报, 2014, 36 (11) :2730-2736
[6]   基于最小生成树的图像分割 [J].
黎莹 ;
戴芳 ;
郝勇 ;
左涛 .
计算机工程与应用 , 2013, (13) :149-151
[7]   结合光谱、纹理与形状结构信息的遥感影像分割方法 [J].
巫兆聪 ;
胡忠文 ;
张谦 ;
崔卫红 .
测绘学报, 2013, 42 (01) :44-50
[8]   Automatic Determination of Number of Homogenous Regions in SAR Images Utilizing Splitting and Merging Based on a Reversible Jump MCMC Algorithm [J].
Askari, Ghasem ;
Xu, Aigong ;
Li, Yu ;
Alavipanah, Seyed Kazem .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (03) :509-521
[9]   A survey of graph theoretical approaches to image segmentation [J].
Peng, Bo ;
Zhang, Lei ;
Zhang, David .
PATTERN RECOGNITION, 2013, 46 (03) :1020-1038
[10]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281