企业财务危机预测是非线性预测,各个影响因素之间又存在着复杂的组合决策关系,并且现实中的数据多为连续的,很难直接用于机器分类学习。因此文中从分析财务预警问题的特点出发,融合了智能软计算的多种方法建立完整的预测模型。首先以粗糙集决策表一致性水平、区间平均信息熵、离散化程度等因素为离散化结果的评价标准;然后利用遗传算法全局、并行搜索的优点,以上面提到的3个因素作为启发信息对所有条件属性的割点集合进行最优搜索。得到离散化的数据后,用BP神经网络对数据进行分类学习。最终网络学习训练后对企业财务状况进行了预测,实验结果表明:系统的预测正确率达93%。