Duffing型方程解的有界性

被引:1
作者
袁小平
机构
[1] 复旦大学数学系!上海
关键词
Duffing型方程; 解的有界性; Moser扭转定理;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
证明了下列Duffing型方程的所有解的有界性 :d2 xdt2 +x2n+1+ 2nj=0xjpj(t) =0 ,n≥ 1 ,其中 ,p1,p2 ,… ,p2n是 1周期的有Lipschitz连续性的函数 ,pn +1,… ,p2n是Zygmund连续的 .这表明Duffing型方程的解的有界性不必要求 pj(t)的光滑性 .
引用
收藏
页码:303 / 312
页数:10
相关论文
共 12 条
[1]  
On invariant curves of area-preserving mapping of annulus. Moser J. Nachr Akad Wiss Gottingen Math Phys . 1962
[2]  
Unbounded solutions of a superlinear Duffing equation. Long Y. Acta Mathematica Sinica . 1991
[3]  
StableandRandomMotioninDynamicalSystems. MoserJ. . 1973
[4]  
BoundednessforsolutionsofnonlinearHill’sequationswithperiodicforcingtermsviaMoser’stwisttheorem. LiuB. JournalofDifferentialEquation . 1989
[5]  
Boundedness of solutions via the twist theorem. Dieckerhoff R,Zehnder E. Annali Della Scuola Normale Superiore di Pisa Classe di Scienze . 1987
[6]  
Invariant curves and time-dependent potentials. Laederich S,Levi M. Ergodic Theory and Dynamical Systems . 1991
[7]  
Quasiperiodic motions in superquadratic time-periodic potentials. Levi M. Communications in Mathematical Physics . 1991
[8]  
Invariant tori of Duffing-type equations. Yuan X. Advances in Mathematics . 1995
[9]  
BoundednessforsolutionsofnonlinearperiodicdifferentialequationviaMoser’’stwisttheorem. LiuB. ActaMathSinica (NewSeries) . 1992
[10]  
Ontheexistenceofinvariantcurvesoftwistmappingsofannulus. RussmannH. GeometricDynamics . 1987