学术探索
学术期刊
新闻热点
数据分析
智能评审
立即登录
基于粗糙集的区间型数据离散化算法
被引:14
作者
:
谭旭
论文数:
0
引用数:
0
h-index:
0
机构:
国防科学技术大学信息系统与管理学院
谭旭
唐云岚
论文数:
0
引用数:
0
h-index:
0
机构:
国防科学技术大学信息系统与管理学院
唐云岚
陈英武
论文数:
0
引用数:
0
h-index:
0
机构:
国防科学技术大学信息系统与管理学院
陈英武
机构
:
[1]
国防科学技术大学信息系统与管理学院
来源
:
系统工程理论与实践
|
2009年
/ 29卷
/ 06期
关键词
:
粗糙集;
区间型数据;
离散化;
相似度矩阵;
相似度阈值;
粗糙熵;
D O I
:
暂无
中图分类号
:
TP18 [人工智能理论];
学科分类号
:
081104 ;
0812 ;
0835 ;
1405 ;
摘要
:
针对条件属性取值为区间型数据的离散化问题,提出了一种新的基于粗糙集理论的离散化算法.首先将粗糙集理论中上、下近似的概念进行扩展,用以描述区间数对象间的距离和相似关系,并通过定义相似度阈值来确定对象间的相似关系.为了达到用最少的离散划分区间得到较好的离散化结果,并合理地确定相似度阈值,文章给出了粗糙熵的概念.通过离散化属性的上、下近似粗糙熵值的计算以及该属性下各区间数对象的相似度矩阵的确定,可以得到该属性下最终的离散化结果.最后给出了一个烟叶质量等级评价的实例,实验结果表明该算法是有效的.
引用
收藏
页码:157 / 165
页数:9
相关论文
未找到相关数据
未找到相关数据