基于多种群遗传算法的复杂网络社区结构发现

被引:3
作者
刘发升
罗延榕
机构
[1] 江西理工大学信息工程学院
关键词
复杂网络; 网络社区; 社区结构; 多种群; 遗传算法;
D O I
暂无
中图分类号
TP18 [人工智能理论]; O157.5 [图论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ; 070104 ;
摘要
提出了一种基于多种群遗传算法的复杂网络社区结构发现新算法,该算法无须预先知道社区内节点的数量以及任何门限值,同时引入并行遗传算法的思想,进一步提高了算法的运行效率。实验结果表明,与传统算法相比,在无先验信息的条件下,使用该算法对不同规模的网络图Zachary和Dophins网络结构进行验证时,能够以较低的时间复杂度、高效并准确地完成对网络社区的有效划分。
引用
收藏
页码:1237 / 1240
页数:4
相关论文
共 16 条
[1]   Detecting community structure in networks [J].
Newman, MEJ .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :321-330
[2]  
The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[J] . David Lusseau,Karsten Schneider,Oliver J. Boisseau,Patti Haase,Elisabeth Slooten,Steve M. Dawson. &nbspBehavioral Ecology and Sociobiology . 2003 (4)
[3]  
Finding instabilitiesin the community structure of complex networks. GFELLER D,CHAPPELIER J C,De Los RIOS P. Physical Re-view E . 2005
[4]  
Identifying the role that animals playin their social networks. LUSSEAU D,NEWMAN M E J. Processings of the Royal Society B:Biological Sciences . 2004
[5]  
Community structure in social and biological networks. Girvan M,Newman MEJ. Proceedings of the National Academy of Sciences of the United States of America . 2002
[6]  
Partitioning sparse matrices with eigenvectors of graphs. Pothen A,Simon H D,Liou K P. SIAM Journal on Computing . 1990
[7]  
Finding and evaluating community structure in networks. Newman MEJ,Girvan M. Physical Review E Statistical, Nonlinear and Soft Matter Physics . 2004
[8]  
Adaptation in natural and artificial systems. Holland JH. . 1975
[9]  
An information flow model for conflict and fission in small groups. Zachary WW. Journal of Anthropological Research . 1977
[10]  
A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Fiedler,M. Czechoslovak Mathematical Journal . 1973