卷积神经网络的人脸隐私保护识别

被引:11
作者
章坚武 [1 ]
沈炜 [1 ]
吴震东 [2 ]
机构
[1] 杭州电子科技大学通信工程学院
[2] 杭州电子科技大学网络空间安全学院
基金
浙江省自然科学基金; 国家重点研发计划;
关键词
人脸识别认证; 卷积神经网络; Arnold变换; 人脸对齐; 人脸隐私保护;
D O I
暂无
中图分类号
TP391.41 []; TP183 [人工神经网络与计算];
学科分类号
080203 ;
摘要
目的近年来,随着人脸识别认证技术的发展及逐渐普及,大量人脸照片存放在第三方服务器上的现象十分普遍,如何对人脸进行隐私保护这个问题变得十分突出。方法首先对人脸图像进行预处理,然后采用Arnold变换对人脸关键部位进行分块随机置乱,并将置乱结果图输入到深度卷积神经网络中。为了解决人脸照片在分块置乱时由于本身拍照角度的原因导致的分块不均等因素,在预处理时根据人眼进行特性点定位,再据此进行对齐处理,使得预处理后的照片人眼处于同一水平线。针对人脸隐私保护及加扰置乱后图像的识别,本文提出了基于分块随机加扰的深度卷积神经网络模型。不包含附加层,该模型网络结构由4个卷积层、3个池化层、1个全连接层和1个softmax回归层组成。服务器端通过深度神经网络模型直接对置乱后人脸图像进行验证识别。结果该算法使服务器端全程不存储原始人脸模板,实现了对原始人脸图像的有效加扰保护。实验采用该T深度卷积神经网络对处理过后的ORL人脸库进行识别,最终识别准确率达到97. 62%。同时通过多组对比实验,验证了本文方法的有效性。结论与其他文献中手工提取特征并利用决策树和随机森林进行训练识别的方法相比,本文方法减少了人工提取特征的工作量,且具有高识别率。
引用
收藏
页码:744 / 752
页数:9
相关论文
共 10 条