Probabilistic Methods in Multi-Class Brain-Computer Interface

被引:3
作者
Ping Yang
机构
基金
中国国家自然科学基金;
关键词
Bayesian linear discriminant analysis; brain-computer interface; kappa coefficient; support vector machine;
D O I
暂无
中图分类号
TP334.7 [接口装置、插件];
学科分类号
081201 ;
摘要
Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface(BCI):support vector machine(SVM) with posteriori probability(PSVM) and Bayesian linear dis-criminant analysis with probabilistic output(PBLDA).A comparative evaluation of these two methods is conducted.The results shows that:1) probabilistic information can improve the performance of BCI for subjects with high kappa coefficient,and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters.
引用
收藏
页码:12 / 16
页数:5
相关论文
共 3 条
[1]  
Brain–computer interfaces for communication and control[J] . Jonathan R Wolpaw,Niels Birbaumer,Dennis J McFarland,Gert Pfurtscheller,Theresa M Vaughan.Clinical Neurophysiology . 2002 (6)
[2]  
Real-time brain-computer interfacing: A preliminary study using Bayesian learning[J] . S. J. Roberts,W. D. Penny.Medical & Biological Engineering & Computing . 2000 (1)
[3]  
Event-related EEG/MEG synchronization and desynchronization: basic principles[J] . G. Pfurtscheller,F.H. Lopes da Silva.Clinical Neurophysiology . 1999 (11)