小波变换在表面肌电信号分类中的应用

被引:14
作者
蔡立羽
王志中
张海虹
机构
[1] 上海交通大学生物医学工程系!上海
关键词
小波变换; 奇异值分解; 人工神经网络; 肌电信号;
D O I
暂无
中图分类号
R312 [医用物理学];
学科分类号
1001 ;
摘要
针对肌电信号的非平稳特性 ,采用小波变换方法对表面肌电信号进行分析。通过奇异值分解有效地提取信号特征进行模式识别 ,能够成功地从掌长肌和肱桡肌采集的两道表面肌电信号中识别展拳、握拳、前臂内旋、前臂外旋四种运动模式。实验表明 ,基于小波变换的奇异值分解方法是一种稳定、有效的特征提取方法 ,为非平稳生理信号的分析提供了新的手段。
引用
收藏
页码:281 / 284
页数:4
相关论文
共 8 条
[1]  
Wavelets and signal processing. Roiul O,Vetterli M. IEEE Signal Processing Magazine . 1991
[2]  
Physiology and mathematics of myoelectric signals. Deluca C. IEEE Transactions on Biomedical Engineering . 1979
[3]  
Function separation of EMG signals via ARMA identification methods for prosthesis control purposes. Graupe D,Cline W. IEEE Transactions on Systems Man and Cybernetics . 1975
[4]  
小波分析导论[M]. 西安交通大学出版社 , (美)崔锦泰(CharlesK.Chui)著, 1995
[5]  
Comparison of SVD methods to extract the foetal electrocardiogram from cutaneous electrode signals[J] . D. Callaerts,B. Moor,J. Vandewalle,W. Sansen,G. Vantrappen,J. Janssens. &nbspMedical & Biological Engineering & Computing . 1990 (3)
[6]  
The application of neural networks to myoelectric signal analysis: a preliminary study. Kelly M,Parker P,Scott R. IEEE Transactions on Biomedical Engineering . 1990
[7]  
Some aspects of nonstationary myoelectric signal processing. Xiong F,Shwedyk E. IEEE Transactions on Biomedical Engineering . 1987
[8]  
Biosignal pattern recognition and interpretation systems. Ciaccio E,Dunn S,Akay M. IEEE Engineering in Medicine and Biology Magazine . 1993