用近红外光谱鉴别杨梅品种的研究

被引:41
作者
何勇
李晓丽
机构
[1] 浙江大学生物系统工程与食品科学学院
关键词
近红外光谱; 杨梅; 主成分分析; 人工神经网络; 聚类;
D O I
暂无
中图分类号
S667.6 [杨梅];
学科分类号
090201 ;
摘要
提出了一种用近红外光谱技术快速无损鉴别杨梅品种的新方法,首先用主成分分析法对典型的四个杨梅品种进行聚类分析,获取杨梅的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别.主成分分析表明,以主成分1和2对样本的得分值做出的得分图,对不同种类杨梅具有较好的聚类作用,可以定性分析杨梅种类.利用主成分分析可以把原始波长变量压缩成能代表原始变量的少数相互正交的主成分,用这些新变量作为神经网络的输入,建立3层BP人工神经网络模型.四个杨梅品种共100个样本用来建立神经网络品种鉴别模型,对未知的20个样本进行预测,结果表明,品种识别准确率达到95%.说明综合主成分分析和人工神经网络的方法具有很好的分类和鉴别作用,为杨梅的品种鉴别提供了一种新方法.
引用
收藏
页码:192 / 194+212 +212
页数:4
相关论文
共 3 条
[1]   湖泊水环境指标的超光谱响应特征分析 [J].
尹球 ;
疏小舟 ;
徐兆安 ;
匡定波 .
红外与毫米波学报, 2004, (06) :427-430+435
[2]   基于神经网络的海杂波模型 [J].
林三虎 ;
朱红 ;
赵亦工 .
红外与毫米波学报, 2004, (01) :55-58
[3]   道地山药红外指纹图谱和聚类分析的鉴别研究 [J].
孙素琴 ;
汤俊明 ;
袁子民 ;
白雁 .
光谱学与光谱分析, 2003, (02) :258-261