本文将中国上市公司因财务状况异常而被特别处理(ST)作为企业陷入财务困境的标志,采用主成分分析方法确定模型变量,并利用多元判别分析、Logistic 回归和改进型 BP 神经网络三种方法进行财务困境预测。比较其预测结果发现,BP 神经网络模型的预测准确率明显优于多元判别分析和Logistic 回归模型,而后两者的判别效果接近,可见改进型 BP 神经网络模型更适合于企业财务困境预测。但三种模型的长期预警能力均不够理想,需要建立以定量模型为主、定性分析为辅的上市公司财务困境预测方式,以提高预测的准确性。