为了提高电力系统短期负荷预测的精度,文中提出了一种基于核主成分分析(KPCA)和BP神经网络的负荷预测方法。影响负荷的因素作为神经网络的输入变量,太多输入变量会加大神经网络的训练负担,运用核主成分分析的方法对初始神经网络输入变量进行非线性降维,将降维后的数据作为神经网络新的输入变量,并对神经网络的训练算法进行改进,以加快收敛速度,最后在每一个时刻点上建立模型进行预测。采用文中提出的方法对甘肃某地区2014年的负荷进行预测,并与已有的BP神经网络方法和PCA-BP神经网络方法进行对比,结果表明该方法可提高负荷预测的精度。