一种基于Huffman树的FCM聚类算法

被引:2
作者
肖满生
周丽娟
文志诚
机构
[1] 湖南工业大学计算机学院
基金
湖南省自然科学基金;
关键词
样本密度; 相异度; Huffman树; 隶属度;
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
【目的】解决传统的FCM算法随机选取初始聚类中心、对噪声敏感、只适合均衡分布的样本聚类问题。【方法】提出一种基于Huffman树的FCM新算法,该算法设计一种高密度样本的相异度矩阵构建Huffman树并获取初始聚类中心,进而给出非归一化约束的样本隶属度函数。【结果】通过人造样本及图像数据集、UCI数据集的实验对比结果表明,算法在聚类精度、运算时间等指标上比基于高斯核FCM算法及传统FCM算法更有优势。【局限】仅凭实验或经验确定样本密度调节因子?,尚缺乏理论依据。【结论】本研究在现实生活中对含有大量噪声样本及样本分布非均衡的数据集聚类有一定的实际应用价值。
引用
收藏
页码:81 / 88
页数:8
相关论文
共 10 条
[1]   基于密度函数加权的模糊C均值聚类算法研究 [J].
孟海东 ;
马娜娜 ;
宋宇辰 ;
徐贯东 .
计算机工程与应用, 2012, (27) :123-127
[2]   Incremental kernel fuzzy c-means with optimizing cluster center initialization and delivery [J].
Jiao, Runhai ;
Liu, Shaolong ;
Wen, Wu ;
Lin, Biying .
KYBERNETES, 2016, 45 (08) :1273-1291
[3]  
Data stream clustering based on Fuzzy C-Mean algorithm and entropy theory[J] . Baoju Zhang,Shan Qin,Wei Wang,Dan Wang,Lei Xue. Signal Processing . 2015
[4]  
Fuzzy C-Means based Inference Mechanism for Association Rule Mining: A Clinical Data Mining Approach[J] . Kapil Chaturvedi,Dr. Ravindra Patel,Dr. D.K. Swami. International Journal of Advanced Computer Scienc . 2015 (7;6)
[6]   Robust Semi-supervised Kernel-FCM Algorithm Incorporating Local Spatial Information for Remote Sensing Image Classification [J].
Zhu, Chengjie ;
Yang, Shizhi ;
Zhao, Qiang ;
Cui, Shengcheng ;
Wen, Nu .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2014, 42 (01) :35-49
[7]  
Multi-channel features based automated segmentation of diffusion tensor imaging using an improved FCM with spatial constraints[J] . Lianghua He,Ying Wen,Meng Wan,Shuang Liu. Neurocomputing . 2013
[8]  
Effective fuzzy c-means clustering algorithms for data clustering problems[J] . S.R. Kannan,S. Ramathilagam,P.C. Chung. Expert Systems With Applications . 2011 (7)
[9]  
Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation[J] . Mohamad Forouzanfar,Nosratallah Forghani,Mohammad Teshnehlab. Engineering Applications of Artificial Intelligence . 2009 (2)
[10]  
A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[J] . J. C. Dunn. Cybernetics and Systems . 1973 (3)