基于局部近邻图的特征描述与特征匹配算法研究

被引:4
作者
谢宜婷
王爱平
邹海
机构
[1] 安徽大学计算机科学与技术学院
关键词
特征描述; 局部近邻图; 特征匹配; 相似性度量;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
特征描述和特征匹配是计算机视觉领域的重要组成部分。近年来,为了实现图像匹配上的可靠性和鲁棒性,许多特征描述算法被提出来,例如SIFT、SURF、DAISY和BRIEF等。然而,当图像发生平移、旋转、缩放等大视角变化时,这些描述符通常会失效。为了解决这个问题,在局部近邻图模型的基础上,提出一种新颖的特征描述和相似性度量方法(LNFM算法)。所提出的描述符和相似度可以很好地应用于各种流行的图像匹配算法。实验结果表明:在特征匹配过程中,该算法可以检测到可靠的匹配关系,性能较为优越。
引用
收藏
页码:185 / 190+196 +196
页数:7
相关论文
共 21 条
  • [1] A robust Graph Transformation Matching for non-rigid registration[J] . Wendy Aguilar,Yann Frauel,Francisco Escolano,M. Elena Martinez-Perez,Arturo Espinosa-Romero,Miguel Angel Lozano. &nbspImage and Vision Computing . 2008 (7)
  • [2] ASIFT: A New Framework for Fully Affine Invariant Image Comparison. Jean-Michel Morel,Guoshen Yu. SIAM Journal on Imaging Sciences . 2009
  • [3] BRIEF: Computing a Local Binary Descriptor Very Fast. Michael Calonder,Vincent Lepetit,Mustafa Oezuysal. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2012
  • [4] Graphical models and point pattern matching. Caetano Tibério S,Caelli Terry,Schuurmans Dale,Barone Dante A C. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2006
  • [5] One-shot learning of object categories. Fei-Fei Li,Fergus Rob,Perona Pietro. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2006
  • [6] A novel feature descriptor based on biologically inspired feature for head pose estimation[J] . Bingpeng Ma,Xiujuan Chai,Tianjiang Wang. &nbspNeurocomputing . 2013
  • [7] A General Framework For Image Feature Matching Without Geometric Constraints[J] . Jonas Toft Arnfred,Stefan Winkler. &nbspPattern Recognition Letters . 2015
  • [8] Robust Feature Matching for Remote Sensing Image Registration via Locally Linear Transforming. Ma J,Zhou H,Zhao J,et al. IEEE Transactions on Geoscience&Remote Sensing . 2015
  • [9] Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval. Subrahmanyam Murala,R. P. Maheshwari,R. Balasubramanian. IEEE Transactions on Image Processing . 2012
  • [10] Image Feature Matching via Progressive Vector Field Con-sensus. J.Ma,Y.Ma,J.Zhao,et al. IEEE Signal Processing Letters . 2015