一种改进的粒子群优化算法

被引:19
作者
武妍
徐敏
机构
[1] 同济大学计算机科学与工程系
关键词
粒子群; 优化; 进化计算;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
作为群体智能的代表性方法之一,粒子群优化算法(PSO)通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。提出了一种改进的粒子群优化算法(MPSO),该算法以广泛学习粒子群优化算法(CLPSO)的思想为基础,主要引入了选择墙的概念。同时在参数的设置中结合高斯分布的概念,以提高算法的收敛性。实验结果表明,改进后的粒子群算法防止陷入局部最优的能力有了明显的增强。同时,算法使高维优化问题中全局最优解相对搜索空间位置的鲁棒性得到了明显提高。
引用
收藏
页码:40 / 42+73 +73
页数:4
相关论文
共 7 条
[1]  
Empirical study of particle swarm opti-mization. EBERHART R C,SHI Y. Proceedings of the1999Congress on Evolutionary Computation . 1999
[2]  
Particle swarm op-timization algorithms with novel learning strategies. LIANG J J,,QIN A K,SUGANTHAN P M,et al. 2004IEEE International Conference on Systems,Man and Cybernetics,SMC2004 . Oct10-132004
[3]  
Particle swarm optimization. KENNEDY J,,EBERHART R C. Proc IEEE International Conference on Neural Networks . 1995
[4]  
Comparing inertia weights and constric-tion factors in particle swarm optimization. EBERHART R C,SHI Y. Proceedings of the IEEE Conference on Evolutionary Computation . 2000
[5]  
Gaussian swarm:a novel particle swarm optimiza-tion algorithm. KROHLING R A. 2004IEEE Conference on Cybernetics and Intel-ligent Systems . 2004
[6]  
Particle swarm optimization in electromagnetics. ROBINSON J,RAHMAT-SAMII Y. IEEE Transactions on Antennas and Propaga-tion . 2004
[7]  
A modified particle swarm optimizer. SHI Y,EBERHART R C. 1998IEEE International Conference on Evolutionary Computation Proceedings IEEE World Congress on Computational Intelligence . 1998