PSO/KNN算法及其在模拟故障诊断中的应用研究

被引:2
作者
张屹
魏学业
蒋海峰
机构
[1] 北京交通大学电子信息学院
关键词
特征提取; 粒子群优化; K-NN分类; 模拟电路故障诊断;
D O I
10.13382/j.jemi.2007.06.014
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
提出了一种基于粒子群优化(particle swarm optimization,PSO)的特征提取算法,该算法以K-NN(nearest neighbor)分类正确率为评价准则,应用粒子群优化算法寻找使提取特征的K-NN分类正确率最大的转换矩阵,从而实现特征的提取。算法的特点是结构简单灵活,对数据的分布特征不敏感,适合于对模拟电路的故障特征进行提取。电路故障诊断示例证明了该特征提取算法在模拟电路故障诊断中的有效性。
引用
收藏
页码:25 / 30
页数:6
相关论文
共 9 条
[1]  
A modified particle swarm opti-mizer. Y.Shi,R.C.Eberhart. IEEE International Conference of Evolutionary Computation . 1998
[2]  
PCA versus LDA. M.Aleix,C.Avinash. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2001
[3]  
Robust Linear Dimensionality Re-duction. K.Yehuda,C.Liran. IEEE Transactions on Visualization and Computer Graphics . 2004
[4]  
Analog Fault Diagnosis of Actual Circuits Using Neural Networks. Farzan Aminian,and Mehran Aminian. IEEE Transactions on Instrumentation and Measurement . 2002
[5]  
"DAVID"[P]. MACHADO STEPHANIE ANN.中国专利:US2012319829A1,2012-12-20
[6]  
Neural network based ana-log circuit fault diagnosis using wavelet transform as pre-processor. Aminian,F,and Aminian,M. IEEE Trans Circuits Syst H,Analog Digit Signal Process . 2000
[7]  
Automated Selection of Test Frequencies for Fault Diagnosis in Analog Electronic Circuits. Alippi C,Catelani M,Fort, A. et al. IEEE Transactions on Instrumentation and Measurement . 2005
[8]  
Unsupervised feature selection using feature similarity. P. Mitra,C. A. Murthy,and S. K. Pal. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
[9]  
Particle swarm Optimiza-tion. J.Kennedy,R.C.Eberhart. Proc IEEE Int Conf on Neural Network . 1995