基于深度学习的数字几何处理与分析技术研究进展

被引:14
作者
夏清
李帅
郝爱民
赵沁平
机构
[1] 虚拟现实技术与系统国家重点实验室(北京航空航天大学)
关键词
计算机图形学; 数字几何处理与分析; 深度学习; 神经网络; 研究进展综述;
D O I
暂无
中图分类号
TP391.41 []; TP183 [人工神经网络与计算];
学科分类号
080203 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
随着各种硬件传感器以及重建技术的快速发展,数字几何模型成为继音频、图像、视频之后的第4代数字媒体,并在多个领域得到广泛应用.传统的数字几何分析和处理方法主要建立在手工定义的模型特征之上,这类方法只对特定问题或者在特定条件下才有效.而深度学习,尤其是神经网络模型,在自然语言处理和图像处理方面的成功,展示了它作为数据特征提取工具的强大能力,因此越来越多地被用在数字几何处理领域.对近年来基于深度学习的数字几何处理与分析技术进行了综述,重点分析了模型匹配与检索、模型分类与分割、模型生成、模型修复与重建以及模型变形与编辑中的相关技术国内外最新研究进展,并指出了存在的主要问题和发展方向.
引用
收藏
页码:155 / 182
页数:28
相关论文
共 30 条
[1]   一种快速的三维扫描数据自动配准方法 [J].
杨棽 ;
齐越 ;
沈旭昆 ;
赵沁平 .
软件学报, 2010, 21 (06) :1438-1450
[2]   数字几何处理研究进展 [J].
胡事民 ;
杨永亮 ;
来煜坤 .
计算机学报, 2009, 32 (08) :1451-1469
[3]   虚拟现实综述 [J].
赵沁平 .
中国科学(F辑:信息科学), 2009, 39 (01) :2-46
[4]   一种基于部件空间分布的三维模型检索方法 [J].
万丽莉 ;
赵沁平 ;
郝爱民 .
软件学报, 2007, (11) :2902-2913
[5]  
Reconstructing non-rigid object with large movement using a single depth camera[J] . Feixiang Lu,Bin Zhou,Feng Lu,Yu Zhang,Xiaowu Chen,Qinping Zhao.Computer Aided Geometric Design . 2018
[6]  
Biharmonic deformation transfer with automatic key point selection[J] . Jie Yang,Lin Gao,Yu-Kun Lai,Paul L. Rosin,Shihong Xia.Graphical Models . 2018
[7]  
Jointly learning shape descriptors and their correspondence via deep triplet CNNs[J] . Mingjia Chen,Changbo Wang,Hong Qin.Computer Aided Geometric Design . 2018
[8]  
Image-guided 3D model labeling via multiview alignment[J] . Kan Guo,Xiaowu Chen,Bin Zhou,Qinping Zhao.Graphical Models . 2018
[9]  
3D shape segmentation via shape fully convolutional networks[J] . Pengyu Wang,Yuan Gan,Panpan Shui,Fenggen Yu,Yan Zhang,Songle Chen,Zhengxing Sun.Computers & Graphics . 2018
[10]  
Learning part-in-whole relation of 3D shapes for part-based 3D model retrieval[J] . Takahiko Furuya,Ryutarou Ohbuchi.Computer Vision and Image Understanding . 2018