基于主成分分析和径向基网络的水稻胡麻斑病严重度估测

被引:17
作者
刘占宇 [1 ]
黄敬峰 [1 ]
陶荣祥 [2 ]
张红志 [2 ]
机构
[1] 浙江大学农业遥感与信息技术应用研究所
[2] 浙江省农业科学院植物保护和微生物研究所
关键词
病害严重度; 水稻胡麻斑病; 主成分分析; 径向基函数; 神经网络;
D O I
暂无
中图分类号
S435.111.4 [侵(传)染性病害];
学科分类号
摘要
对植被病害严重度的精确预测是采取植保措施的关键,同时对减少农药使用量也具有积极意义。该研究首先对叶片光谱反射数据进行重采样和求一阶、二阶微分,再用主成分分析PCA技术对上述变换光谱进行分析,最后结合径向基函数神经网络RBFN对水稻胡麻叶斑病严重度进行预测。将全部的光谱数据和病害严重度分为两组,75%用于网络训练,25%用作网络性能测试。文中对预测结果准确性有重要影响的径向基函数扩展速率和不同的数据处理方法进行了讨论,研究发现,一阶微分光谱经PCA压缩后,获得主分量光谱,输入RBN,病害严重度的预测均方根误差仅有7.73%。表明:主成分分析和径向基函数神经网络(PCA-RBFN)相结合,可以对水稻胡麻斑病严重度进行快速、精确的估算。
引用
收藏
页码:2156 / 2160
页数:5
相关论文
共 1 条
  • [1] Riedell WE,Blackmer T M. Crop Science . 1999