压缩感知

被引:62
作者
许志强
机构
[1] 中国科学院数学与系统科学研究院,计算数学与科学工程计算研究所,科学与工程计算国家重点实验室
关键词
压缩感知; 宽度; 线性规划;
D O I
暂无
中图分类号
TN911.6 [信号分析];
学科分类号
080401 ; 080402 ;
摘要
压缩感知是近来国际上热门的研究方向.其主要思想为:利用信号稀疏性的特征,通过尽量少的观测信息恢复信号.压缩感知在多个应用领域,如医学成像、图像处理、地质勘探等中具有很好的应用前景.此外,它与逼近论、最优化、随机矩阵及离散几何等领域密切相关,由此产生了一些漂亮的数学结果.本文综述压缩感知一些基本结果并介绍最新进展.主要包括RIP矩阵编码与l1解码的性能、RIP(restricted isometry property)矩阵的构造、Gelfand宽度、个例最优性及OMP(orthogonalmatching pursuit)解码等.
引用
收藏
页码:865 / 877
页数:13
相关论文
共 9 条
[1]   Deterministic sampling of sparse trigonometric polynomials [J].
Xu, Zhiqiang .
JOURNAL OF COMPLEXITY, 2011, 27 (02) :133-140
[2]   EXPLICIT CONSTRUCTIONS OF RIP MATRICES AND RELATED PROBLEMS [J].
Bourgain, Jean ;
Dilworth, Stephen ;
Ford, Kevin ;
Konyagin, Sergei ;
Kutzarova, Denka .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (01) :145-185
[3]  
The Gelfand widths of ? p -balls for 0 < p ≤ 1[J] . Simon Foucart,Alain Pajor,Holger Rauhut,Tino Ullrich.Journal of Complexity . 2010 (6)
[4]   FAST LINEARIZED BREGMAN ITERATION FOR COMPRESSIVE SENSING AND SPARSE DENOISING [J].
Osher, Stanley ;
Mao, Yu ;
Dong, Bin ;
Yin, Wotao .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (01) :93-111
[5]  
Convergence of the linearized Bregman iteration for $\ell 1$-norm minimization[J] . Jian-Feng Cai,Stanley Osher,Zuowei Shen.Mathematics of Computation . 2009 (268)
[6]   Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing [J].
Wojtaszczyk, P. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (01) :1-13
[7]   A Simple Proof of the Restricted Isometry Property for Random Matrices [J].
Baraniuk, Richard ;
Davenport, Mark ;
DeVore, Ronald ;
Wakin, Michael .
CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) :253-263
[8]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[9]  
Adaptive greedy approximations[J] . G. Davis,S. Mallat,M. Avellaneda.Constructive Approximation . 1997 (1)