新型MFCC和波动模型相结合的二层环境声音识别

被引:3
作者
李勇
李应
余清清
机构
[1] 福州大学数学与计算机科学学院
关键词
生态环境; 声音识别; 改进的Mel频率倒谱参数; 波动模型; Kullback-Leibler距离;
D O I
暂无
中图分类号
TN912.34 [语音识别与设备];
学科分类号
0711 ;
摘要
对生态环境中各种不同的声音进行快速准确的识别有重要的现实意义,但是因其具有较高背景噪声加大了识别的难度。提出一种具有良好抗噪能力和较高识别性能的两层音频识别技术。选择经过改进的新型的MFCC参数以及波动模型作为生态环境声音的特征集合。利用这种新型的MFCC系数构造音频信号的高斯分布模型,并且计算未知音频信号与样本音频信号的高斯分布模型之间的Kullback-Leibler距离,随后计算它们的波动模型之间的欧几里德距离。根据计算出的Kullback-Leibler距离和欧几里德距离实现两层音频识别系统。实验结果表明两层音频识别技术即使在噪声的影响下也能保持较高的识别率。
引用
收藏
页码:132 / 135+139 +139
页数:5
相关论文
共 11 条
[1]  
A new MFCC improvement method for robust ASR. Yeganeh H,Ahadi S M,Ziaei A. 9th International Conference on Sig-nal Processing . 2008
[2]  
Audio Classification in A Weighted SVM. Wenjuan Pan,Yong Yao,Zhijing Liu. Proceedings of 2007 International Symposium on Communications and Information Technologies (ISCIT 2007) .
[3]  
Penny[P]. VANCE III WALTER.中国专利:US2017112265A1,2017-04-27
[4]  
Song-level features and SVMS for music classification. Mandel M,,Ellis D. ISMIR2005 .
[5]  
Multi-modal temporal asyn-chronicity modeling by product HMMs for robust audio-visual speech recognition. Nakamura S,,Kumatani K,Tamura S. Proceedings of the4th IEEE Internation-al Conference on Multimodal Interfaces . 2002
[6]  
Model based clustering of audio clips using Gaussian mixture models. Chandrakala S,Sekhar C C. Seventh International Confer-ence on Advances in Pattern Recognition . 2009
[7]  
Audio environment classica-tion for hearing aids using artificial neural networks with win-dowed input. Freeman G,Dony R D,Areibi S M. Computational Intelligence in Image and Signal Processing . 2007
[8]  
Environmental sound recognition usingl lMP-based features. Chu Selina,Narayanan S. IEEE International Conference on Acoutics,Speech and Signal Processing(ICASSP2008) . 2008
[9]  
Psychoacoustics: Facts and Models. E. Zwicker,H. Fastl. . 1999
[10]  
Evaluation of feature extractors and psycho-acous-tic transformations. Lidy T,Rauber A. Proceedings of the6th International Con-ference on Music InformationRetrieva(lISMIR’’05) . 2005