采用PEN2型电子鼻系统对芝麻油的玉米油掺假进行定性鉴别和定量预测,运用主成分分析,逐步判别分析和Fish-er线性判别函数变换对原始数据进行预处理,从而降低原始数据空间的维数,并用判别分析与人工神经网络对数据进行进一步分析,考察了不同的数据预处理方法的效果。判别分析结果表明,采用Fisher线性判别函数变换所得到的十个变量判别能力最强,误判率为0.61%,仅有1个样品出现误判。在BP神经网络的定量预测中,采用逐步判别分析所筛选出的十个变量作为网络输入,所得的预测结果最为理想,绝对误差个体值的95%置信区间最小,为(-4.71%,3.38%),均方误差为4.75,预测值与实际值之间有极显著的相关性,相关系数R=0.99808。