支持向量机 (SVM )是一种较新的机器学习方法 ,它利用靠近边界的少数向量构造一个最优分类超平面 .在训练分类器时 ,SVM的着眼点在于两类的交界部分 ,那些混杂在另一类中的点往往无助于提高分类器的性能 ,反而会大大增加训练器的计算负担 ,同时它们的存在还可能造成过学习 ,使泛化能力减弱 .为了改善支持向量机的泛化能力 ,该文在其基础上提出了一种改进的SVM———NN SVM :它先对训练集进行修剪 ,根据每个样本与其最近邻类标的异同决定其取舍 ,然后再用SVM训练得到分类器 .实验表明 ,NN SVM相比SVM在分类正确率、分类速度以及适用的样本规模上都表现出了一定的优越性