改进的粒子群算法优化神经网络及应用

被引:15
作者
何明慧 [1 ]
徐怡 [1 ,2 ]
王冉 [1 ]
胡善忠 [1 ]
机构
[1] 安徽大学计算机科学与技术学院
[2] 安徽大学教育部智能计算与信号处理实验室
基金
安徽省自然科学基金;
关键词
神经网络权值; 粒子群优化算法; 动态惯性权重; 变异与交叉; 有效性;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
针对神经网络权值选取不精确的问题,提出改进的粒子群优化算法结合BP神经网络动态选取权值的方法。在改进的粒子群优化算法中,采用动态惯性权重,并且认知参数与社会参数相互制约。同时,改进的粒子群优化算法结合差分进化算法使粒子拥有变异与交叉操作,保持粒子的多样性。基于改进的粒子群优化算法与BP神经网络,构建IPSONN神经网络模型并运用于酒类品质的预测。实验分别从训练精度、正确率及粒子多样性三方面验证了IPSONN模型的有效性。
引用
收藏
页码:107 / 113+128 +128
页数:8
相关论文
共 10 条
[1]   基于多策略的多目标粒子群优化算法 [J].
雷瑞龙 ;
侯立刚 ;
曹江涛 .
计算机工程与应用, 2016, 52 (08) :19-24
[2]  
PSO-based analysis of Echo State Network parameters for time series forecasting[J] . Naima Chouikhi,Boudour Ammar,Nizar Rokbani,Adel M. Alimi.Applied Soft Computing . 2017
[3]  
Neural networks: An overview of early research, current frameworks and new challenges[J] . Alberto Prieto,Beatriz Prieto,Eva Martinez Ortigosa,Eduardo Ros,Francisco Pelayo,Julio Ortega,Ignacio Rojas.Neurocomputing . 2016
[4]  
Improved accelerated PSO algorithm for mechanical engineering optimization problems[J] . Najeh Ben Guedria.Applied Soft Computing . 2016
[5]  
Understanding quality judgements of red wines by experts: Effect of evaluation condition[J] . María-Pilar Sáenz-Navajas,José Miguel Avizcuri,José Federico Echávarri,Vicente Ferreira,Purificación Fernández-Zurbano,Dominique Valentin.Food Quality and Preference . 2016
[6]  
Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO[J] . Fernando Gaxiola,Patricia Melin,Fevrier Valdez,Juan R. Castro,Oscar Castillo.Applied Soft Computing . 2016
[7]  
Interval based Weight Initialization Method for Sigmoidal Feedforward Artificial Neural Networks[J] . Sartaj Singh Sodhi,Pravin Chandra.AASRI Procedia . 2014
[8]  
Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting[J] . Chao Ren,Ning An,Jianzhou Wang,Lian Li,Bin Hu,Duo Shang.Knowledge-Based Systems . 2013
[9]   Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces [J].
Storn, R ;
Price, K .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 11 (04) :341-359
[10]  
Particle swarm optimization: developments, applications and resources. Eberhart RC, Shi YH. Proceedings of the IEEE Congress on Evolutionary Computation(CEC 2001) . 2001