针对浙江省4种典型土壤,研究应用可见-近红外光谱、近红外光谱和中红外光谱3个波段范围进行土壤快速分类的方法.在获取光谱信息的基础上,采用不同光谱建模方法以提高检测精度,简化分析计算;并分别采用主成分分析结合人工神经网络(PCA-ANN/BP)、偏最小二乘法(PLS)和偏最小二乘法结合人工神经网络(PLS-ANN)3种方法进行建模.结果表明:中红外光谱波段对土壤分类的效果不理想,而可见-近红外光谱、近红外光谱波段均能较好地进行土壤分类;在可见-近红外波段,PLS-ANN模型对土壤的分类效果优于PCA-ANN/BP和PLS模型,为土壤快速准确分类提供了一种简便可行的方法.