考虑随机方差的最优消费和投资决策问题

被引:5
作者
刘海龙
吴冲锋
机构
[1] 上海交通大学管理学院
基金
国家杰出青年科学基金;
关键词
最优消费和投资; 随机方差; 随机最优控制; 值函数;
D O I
10.13587/j.cnki.jieem.2002.01.013
中图分类号
F224 [经济数学方法];
学科分类号
0701 ; 070104 ;
摘要
研究在证券价格服从一个带有随机方差几何布朗运动情况下的最优消费和投资问题。首先建立了最优消费和投资问题随机最优控制数学模型 ,运用随机最优控制理论 ,得到了最优消费和投资随机最优控制问题的值函数所满足的偏微分方程 ;其次 ,基于最优控制问题的值函数给出了具有反馈形式的最优消费和投资策略 ,并与经典Merton问题进行了比较分析 ;最后 ,进行了算例分析。
引用
收藏
页码:47 / 50+3 +3-2
页数:6
相关论文
共 10 条
[1]  
Hedging in incomplete markets with HARA utility. Duffie D,Fleming W,Soner H,etc. Journal of Econometrics . 1997
[2]  
Optimum consumption and protfolio policies when asset follow a diffusion process. Cox J,Huang C. Journal of Econometrics . 1989
[3]  
Optimal investment and consumption with transaction Costs. Shreve S E,Soner H M. The Annual of Applied Probability . 1994
[4]  
Optimal consumption and equilibrium prices with portfolio constraints and stochastic income. Domenico C. Journal of Econometrics . 1997
[5]  
Stochastic consumption, risk aversion,and the temporal behavior of asset returns. Hansen L P,Singleton K J. Journal of Politics . 1983
[6]  
Optimal portfolio diversification in a general continuous time model. Aase K K. Stochastic Processes and Their Applications . 1984
[7]  
Admissible investment strategies in continuous trading. Aase K K. Stochastic Processes and Their Applications . 1988
[8]  
Investment-consumption mode with transaction fees and Markov-chain parameters. Zarphopoulou T. SIAM Journal of Control Optimization . 1992
[9]  
Stochastic differential Equations. Ksendal B. . 1998
[10]  
Optimum consumption and protfolio rules in a continuous time model. Merton R C. Journal of Econometrics . 1971