任意概率分布下Golomb码和扩展Gamma码的性能分析

被引:4
作者
杨胜天
仇佩亮
机构
[1] 浙江大学信息与电子工程学系
[2] 浙江大学信息与电子工程学系 杭州
[3] 杭州
关键词
信源编码; 整数编码; Golomb码; Elias γ码;
D O I
暂无
中图分类号
TN911.2 [信息论];
学科分类号
070104 ; 081101 ;
摘要
以信源的平均值给出了任意概率分布下Golomb码的平均码长的上下界和最优的参数选择准则。在Golomb 码的基础上,进一步推广了Elias的γ码,提出了扩展的γ码,同时给出了其性能界和最优的参数选择准则。扩展γ 码是一类通用码,而且在一定的条件下可以达到渐近最优的性能。最后,提出了一个低复杂性的基于Golomb码和 扩展γ码的通用数据压缩框架,并通过构建一个样例系统说明了该数据压缩框架的实际应用价值。
引用
收藏
页码:514 / 518
页数:5
相关论文
共 13 条
[1]  
Almost asymptotically optimal flag encoding of the integers. Wang M. IEEE Transactions on Information Theory . 1988
[2]  
A new class of the universal representation for the positive integers. Amemiya T,Yamamoto H. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences . 1993
[3]  
A locally adaptive data compression scheme. Bentley J L,Sleator D D,Tarjan R E,et al. Communications of the ACM . 1986
[4]  
A new asymptotically optimal code for the positive integers. Yamamoto H,Ochi H. IEEE Transactions on Information Theory . 1991
[5]  
Optimal source codes for geometrically distributed integer alphabets. Gallager R G,Voorhis D C V. IEEE Transactions on Information Theory . 1975
[6]  
Optimal prefix codes for sources with two-sided geometric distributions. Merhav N,Seroussi G,Weinberger M J. IEEE Transactions on Information Theory . 2000
[7]  
Robust transmission of unbounded strings using Fibonacci representations. Apostolico A,Fraenkel A S. IEEE Transactions on Information Theory . 1987
[8]  
An upper bound on the entropy series. Wyner A D. Information and Control . 1972
[9]  
Universal codeword sets and representations of the integers. Elias P. IEEE Transactions on Information Theory . 1975
[10]  
The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. Weinberger M J,Seroussi G,Sapiro G. IEEE Transactions on Image Processing . 2000