基于PCA和NSCT的多光谱图像和全色图像的融合

被引:4
作者
时海亮 [1 ]
魏涛 [2 ]
辛向军 [1 ]
裴云霞 [1 ]
机构
[1] 不详
[2] 郑州轻工业学院数学与信息科学系
[3] 不详
[4] 河南工程学院计算机科学与工程系
[5] 不详
关键词
图像融合; 主分量分析; 非下采样Contourlet; Sobel梯度; 结构相似性指标;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
研究了主分量分析(PCA)和非下采样Contourlet变换(NSCT),提出一种新的多光谱图像和全色图像的融合算法。该方法对多光谱图像进行PCA变换,对所得的第一主分量(PC1)以及全色图像进行NSCT变换。对二者的低频近似系数再次进行PCA变换以寻求多光谱信息和空间信息的平衡;对于高频细节系数,通过结构相似性指标(SSIM)和局部Sobel梯度进行融合,进一步提高空间信息量;经过逆NSCT和逆PCA变换得到融合图像。实验结果表明,提出的方法在增强融合图像空间细节表现能力的同时,尽可能地保留了多光谱图像的光谱信息,优于传统的基于IHS、PCA、小波变换和Contourlet变换的融合方法,是有效可行的。
引用
收藏
页码:212 / 216
页数:5
相关论文
共 15 条
[1]  
Yang Xiaohui,Jiao Licheng.Fusion algorithm for remote sensing images based on nonsubsampled contourlet transform. Acta Automatica Sinica . 2008
[2]  
WALD L.Quality of high resolution synthesized images:Isthere a simple criterion?. Proc.Int.Conf.FusionEarth Data . 2000
[3]  
Gonzalez A M,Saleta J L,Catalan R G,et al.Fusion of multispectral and panchromatic images usingimproved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing . 2004
[4]  
Wang Weiwei,Shui Penglang,Song Guoxiang.Multifo-cus image fusion in wavelet domain. Proc Int Conf Machine Learning and Cybernetics . 2003
[5]  
Zhou Jiangping,Da Cunha A L,Do M N.Nonsubsam-pled contourlet transform:construction and application in enhancement. Proc Int Con Image Process . 2005
[6]  
Xydaes C,Petrovi V.Objective image fusion performance measure. Electronics Letters . 2000
[7]  
Do M N,Vetterli M.The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing . 2005
[8]  
Mallat S A.Theory of multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989
[9]  
Ranchin T,Wald L.Fusion of high spatial and spectral resolution images: the ARSIS concept and its implementation. Photogrammetric Engineering and Remote Sensing . 2000
[10]  
Da Cunha A L,Zhou Jiangping,Do M N.Nonsubsam-pled contourlet transform:filter design and applicationsin denoising. Proc Int Con Image Process . 2005