共 3 条
基于聚类算法的KNN文本分类算法研究
被引:29
作者:
江涛
陈小莉
张玉芳
熊忠阳
机构:
来源:
关键词:
K近邻;
隶属度;
文本分类;
D O I:
暂无
中图分类号:
TP391.1 [文字信息处理];
学科分类号:
081203 ;
0835 ;
摘要:
KNN算法是一种在人工智能领域如专家系统、数据挖掘、模式识别等方面广泛应用的算法。该算法简单有效,易于实现。但是KNN算法在决定测试样本的类别时,是把所求的该测试样本的K个最近邻是等同看待的,即不考虑这K个最近邻能表达所属类别的程度。由于训练样本的分布是不均匀的,每个样本对分类的贡献也就不一样,因此有必要有区别的对待训练样本集合中的每个样本。利用聚类算法,求出训练样本集合中每个训练样本的隶属度,利用隶属度来区别对待测试样本的K个最近邻。通过实验证明,改进后的KNN算法较好的精确性。
引用
收藏
页码:153 / 155+158
+158
页数:4
相关论文