兴奋性化学突触耦合的神经元的同步

被引:23
作者
王青云 [1 ]
陆启韶 [2 ]
机构
[1] 内蒙古财经学院统计与数学学院
[2] 北京航空航天大学理学院
关键词
快峰神经元模型; 兴奋性化学突触; 同步;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
基于动力系统的稳定性理论、数值计算分岔图和线性化系统的最大Lyapunov指数,研究了经兴奋性化学耦合的快峰神经元的同步动力学.研究表明,随着一些关键参数的改变,耦合神经元能呈现丰富的同步行为,如各种周期的同步和混沌的同步.研究结果对理解神经元系统的同步运动具有指导意义.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 7 条
[1]   Is synchronized neuronal gamma activity relevant for selective attention? [J].
Fell, J ;
Fernández, G ;
Klaver, P ;
Elger, CE ;
Fries, P .
BRAIN RESEARCH REVIEWS, 2003, 42 (03) :265-272
[2]  
Short-term synaptic dynamics promote phase maintenance in multi-phasic rhythms[J] . Farzan Nadim,Victoria Booth,Amitabha Bose,Yair Manor.Neurocomputing . 2003
[3]  
Synchrony: a neuronal mechanism for attentional selection?[J] . Ernst Niebur,Steven S Hsiao,Kenneth O Johnson.Current Opinion in Neurobiology . 2002 (2)
[4]  
Transitions between different synchronous firing modes using synaptic depression[J] . Victoria Booth,Amitabha Bose.Neurocomputing . 2002
[5]  
Stability of asynchronous firing states in networks with synaptic adaptation[J] . Sergio Solinas,John Hertz.Neurocomputing . 2001
[6]  
Reciprocal excitatory synapses convert pacemaker-like firing into burst firing in a simple model of coupled neurons[J] . Carmen C. Canavier.Neurocomputing . 2000
[7]   AN EFFICIENT METHOD FOR COMPUTING SYNAPTIC CONDUCTANCES BASED ON A KINETIC-MODEL OF RECEPTOR-BINDING [J].
DESTEXHE, A ;
MAINEN, ZF ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1994, 6 (01) :14-18