遗传算法基础理论研究的新近发展

被引:46
作者
徐宗本
陈志平
章祥荪
机构
[1] 西安交通大学理学院信息科学与系统科学研究所!中国西安
[2] 陕西
[3] 不详
[4] 中国科学院数学与系统科学研究院应用数学研究所!中国北京
关键词
遗传算法; 收敛性; 收敛速度分析; 模型; 时间复杂性;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
摘要
本文综述有关遗传算法收敛性及收敛速度估计的近期研究结果.在分类概述相关的Vose-Liepins模型、 Markov链模型、公理化模型、连续(积分算子)模型及收敛速度估计、迭代次数估计与时间复杂性估计的基础上,指出遗传算法理论研究存在的其它亟待解决的问题.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 32 条
  • [1] Using reliability analysis to estimate the number of generations toconvergence in genetic algorithms. Chakraborty U K and Dastidar D K. Imformation Processing Letters . 1993
  • [2] Stochastic Model,Theoretical Analyses and Applications of Genetic Algorithms. Gao Y. . 1997
  • [3] An analysis of a simple genetic algorithm. Rabinovich Y,Wigderson A. Proceedings of the Fourth International Conference on Genetic Algorithms . 1991
  • [4] Punctuated equilibria in genetic search. Vose M D and Liepins G E. Complex Systems . 1991
  • [5] A proof of the Vose-Liepins conjecture. Koehler G J. Annals of Mathematics . 1994
  • [6] An analysis of non-binary genetic algorithms with cardinality 2~v. Bhattacharyya S and Koehler G J. Complex Systems . 1994
  • [7] Finiteness of the fixed point set for the simple genetic algorithm. Wright A H and Vose M D. Evolutionary Computation . 1996
  • [8] Modeling genetic algorithms with Markov chains. Nix A E and Vose M D. Annals of Mathematica andArtificial Intelligence . 1992
  • [9] No ho lunch theorem for search. Wolpert D,Macreadg W. . 1995
  • [10] Syntactic analysis of convergence in genetic algorithms. Louts S J and Rawlins G J E. Foundations ofGenetic Algorithms 2, San Mateo, Morgan Kaufmann . 1993