共 6 条
一种改进的最小二乘支持向量机算法
被引:16
作者:
万辉
[1
]
魏延
[2
]
机构:
[1] 重庆师范大学科研处
[2] 重庆师范大学信息科学与工程学院
关键词:
最小二乘支持向量机;
增量学习;
稀疏性;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
最小二乘支持向量机是标准支持向量机的一种扩展,它是支持向量机在二次损失函数下的一种形式。它用等式约束代替不等式约束,求解过程变为解一组等式方程,避免了求解耗时的二次规划问题,但同时也丧失了标准支持向量机的稀疏性,影响了二次学习的效率。针对上述问题,本文提出了一种改进的最小二乘支持向量机增量学习方法。改进的最小二乘支持向量机算法采用自适应剪枝方法对解进行稀疏,根据每次训练得到的分类器性能来设定剪枝阈值和样本增量的大小,如果得到的分类器性能好,剪枝阈值和样本增量就大,反之,剪枝阈值和样本增量就小,从而提高了最小二乘支持向量机训练效率,解决了稀疏性问题。最后,仿真实验表明该算法方案可行。
引用
收藏
页码:69 / 72+93
+93
页数:5
相关论文