传统的LBP算子只利用了局部的信息,而忽略了全局信息。MBLBP算子虽然充分考虑了全局信息,但对局部信息的表示不足。在此提出一种改进后的LBP特征的人脸识别方法,改进后的LBP算子不仅能够利用局部特征,同时也兼顾了全局信息。该方法首先将人脸图像分块,对于每个分块,计算LBP特征,对于得到的LBP特征,根据其中心像素和分块灰度均值关系重新进行计算得到改进后的LBP特征,最后采用最近邻分类器进行识别。在ORL和YALE标准人脸数据库上的实验表明,改进后的识别效果优于使用传统LBP算子和MBLBP算子。采用改进后的LBP算子,能够明显提高识别率,在ORL和YALE的实验显示能提高3%8%左右的识别率。