提取高层建筑结构选型的主要控制因素 ,以此建立基于 BP(Back- Propagation)神经网络的高层建筑结构体系选择的数学模型 .分别采用传统的 BP算法、改进的带动量自适应学习率 BP算法 ,以及 L- M(Levernberg- Marquart)算法 ,进行高层建筑结构体系选择的研究 .研究结果表明 ,传统的 BP算法和改进的带动量自适应学习率 BP算法 ,无法适应土木工程中大规模的数据结构 .而采用 L- M算法神经网络 ,较传统 BP算法快 10 2~ 10 3倍 ,并且精度高 ,可以较好地解决高层建筑结构体系选型问题 .