共 12 条
基于粗糙集理论-主成分分析的Elman神经网络短期风速预测
被引:33
作者:
尹东阳
盛义发
蒋明洁
李永胜
谢曲天
机构:
[1] 南华大学电气工程学院
来源:
关键词:
风速预测;
Elman神经网络;
主成分分析;
粗糙集理论;
预测值修正;
D O I:
暂无
中图分类号:
TM614 [风能发电];
学科分类号:
0807 ;
摘要:
为了解决传统静态前馈神经网络(FNN)在短期风速预测中易陷入局部最优值及动态性能的不足,引入Elman动态神经网络建立风速预测模型,采用主成分分析法(PCA)对原始风速数据进行特征提取以优化神经网络的输入,改进激励函数和网络结构以寻求函数收敛速度和预测精度的最优解。针对Elman神经网络预测模型在风速波动的峰值处预测误差较大及预测精度存在波动性,提出采用粗糙值理论对模型预测值进行修正与补偿,进一步提高预测精度。实验证明:所提出的方法能有效提高预测精度,增强神经网络模型的泛化能力,具有较好的实用性。
引用
收藏
页码:46 / 51
页数:6
相关论文