改进的自适应中值滤波

被引:78
作者
王晓凯
李锋
机构
[1] 复旦大学电子工程系
关键词
脉冲噪声; 均值滤波; 中值滤波; 自适应窗口;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
均值滤波能较好的平滑图像的噪声,自适应中值滤波能较好的保存原始图像的细节和边缘。为了恢复被高密度脉冲噪声污染的图像,提出了改进的自适应中值滤波算法,新算法结合了均值滤波和自适应中值滤波两者的优点。实验结果表明,该算法能够有效地消除被污染图像中的高密度脉冲噪声,并较好地保留原始图像细节和边缘。
引用
收藏
页码:175 / 176+218 +218
页数:3
相关论文
共 9 条
  • [1] Extending the ap-plication of conditional signal adaptive median filter to impulsive noise. Hashem M M,Wahdan A M A,Salem A,et al. The2006International Conference on Computer Engineer-ing and Systems . 2006
  • [2] Generalized median filtering and related nonlinear filtering techniques. Lee Y H,Kassam S A. IEEE Transactions on Acoustics Speech and Signal Processing . 1985
  • [3] Median filters with adaptive length. Lin H M,Willson A N. IEEE Transactions on Circuits and Systems . 1988
  • [4] A new efficient approach for the removal of impulse noise from highly corrupted images. Abreu E,Lightstone M,Mitra SK,et al. IEEE Transactions on Image Processing . 1996
  • [5] Digital Image Processing. R.C. Gonzalez,R. E. Woods. . 2001
  • [6] Minimum mean squared error impulse noise estimation and cancellation. Kenneth J Kerpez. IEEE Transactions on Signal Processing . 1995
  • [7] Adaptive median filters: newalgorithms and results. Hwang, H,Haddad, R.A. IEEE Transactions on Signal Processing . 1995
  • [8] Application of two-dimen-sional generalized mean filtering for removal of impulse noises from im-ages. Kundu A,Mitra S K,Vaidyanathan P P. IEEE Transactions Acoustics,Speech and Signal Processing . 1984
  • [9] Nonlinear methods for smoothing data. Tukey J W. Proc of EAS-CON’74 . 1974