基于辅助变量KNN分析的软测量建模方法

被引:5
作者
李哲
田学民
机构
[1] 中国石油大学信息与控制工程学院电子信息工程系
关键词
软测量; 主元分析; 核主元分析; 支持向量机; K-最近邻算法;
D O I
暂无
中图分类号
TP274 [数据处理、数据处理系统];
学科分类号
0804 ; 080401 ; 080402 ; 081002 ; 0835 ;
摘要
提出一种基于辅助变量最近邻(KNN)分析的软测量建模方法,该方法将KNN算法应用于辅助变量分类,根据分类结果,应用核主成分分析(KPCA)和支持向量回归机(SVR)相结合进行软测量建模。KNN分析独立于后继回归模型,却又直接影响模型结构,KPCA作为中间层,在KNN分类结果指导下提取不同类别包含辅助变量高阶信息的特征主元,然后使用SVR建立特征主元和主导变量之间的回归模型。用该方法建立粗汽油干点软测量模型,结果表明KNN-KPCA-SVR(KKS)模型的预测精度和泛化能力优于线性PLS、RBF核函数SVR和KPCA-SVM模型。
引用
收藏
页码:941 / 946
页数:6
相关论文
共 7 条